Abstract
Biological piezoelectric materials are beginning to gain attention for their huge potential as eco-friendly energy harvesting materials. In particular, simple amino acid and peptide crystal assemblies are demonstrating large voltage outputs under applied force, and high sensitivity when detecting vibrations. Here we utilise Density Functional Theory (DFT) calculations to quantitatively predict the energy harvesting properties of two understudied proteinogenic amino acid crystals: L-Arginine and L-Valine. The work highlights the ability of quantum mechanical calculations to screen crystals as high-performance energy harvesters, and demonstrates the capability of small biological crystals as eco-friendly piezoelectric materials. L-Arginine is predicted to have a maximum piezoelectric voltage constant of gij = 274 mV m/N, with a Young’s Modulus of E = 17.1 GPa. L-Valine has a maximum predicted piezoelectric voltage constant of gij = 62 mV m/N, with a calculated Young’s Modulus of E = 19.8 GPa.
Funder
Science Foundation Ireland
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献