The Snow-Friction of Freestyle Skis and Snowboards Predicted From Snow Physical Quantities

Author:

Wolfsperger Fabian,Meyer Frédéric,Gilgien Matthias

Abstract

Previous research has shown that friction between ski and snow can vary substantially due to changes in snow conditions. The variation of friction affects the speed a freestyle skier or snowboarder (athlete) reaches during the in-run of a jump. Athletes risk severe injuries if their take-off speed is not within the right margin to land in the “sweet spot” zone. To reduce the risk of injury, snow park designers and competition managers need to calculate the speed athletes reach during the in-run. However, despite multiple attempts over the last decades, to date no model can predict ski-snow friction from snow physical quantities. Hence, simulations of in-run speeds suffer from insufficient validity. For the first time, this work combines kinematic athlete data and comprehensive snow surface measurements to infer the coefficient of friction of freestyle skis and snowboards across a wide range of snow conditions. Athletes’ point mass kinematics were recorded at more than 200 straight gliding runs with differential global navigation satellite systems. The subjects’ air drag and lift were deployed from wind tunnel measurements. Along with the kinematic data and data from wind measurements, a mechanical model of the athlete was established to solve the equation of motion for the coefficient of friction between ski/snowboard and snow. The friction coefficients for ski (snowboard) ranged from 0.023 ± 0.006 (0.026 ± 0.008) to 0.139 ± 0.018 (0.143 ± 0.017) and could be explained well (Radj2 = 0.77) from the measured snow parameters using a multivariate statistical model. Our results provide a new quantitative tool for practitioners to predict the friction of skis and snowboard on snow of various conditions, which aims to increase athletes’ safety in slopestyle and big air.

Funder

International Olympic Committee

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference61 articles.

1. Verletztentransporte im Schneesport, 2015/2016;Bianchi,2016

2. Safety in Big Jumps: Relationship between landing Shape and Impact Energy Determined by Computer Simulation;Böhm,2009

3. Sliding of UHMWPE on Ice: Experiment vs. Modeling;Böttcher;Cold Regions Sci. Technol.,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3