Characterization of the Rate of Injection of Diesel Solenoid Injectors Operated in the Multiple Injection Strategy: A Comparison of the Spray Momentum and Bosch Tube Methods

Author:

Aljohani Bassam S.,Ben Houidi Moez,Du Jianguo,Dyuisenakhmetov Aibolat,Mohan Balaji,AlRamadan Abdullah,Roberts William L.

Abstract

Multiple injection strategies can be used for controlling the heat release rate in an engine, particularly in compression ignition engines. This can mitigate the heat transfer losses and overcome the limitation related to the maximum pressure allowed for a particular engine. Controlling heat release with repetitive injections requires precise characterization of the fuel injection rates. In such a configuration, the injector used should be characterized for its hydraulic delay, rate of injection, and the effect of dwell timing with multiple injections. This study investigates the fuel injection behavior of a high-flow-rate solenoid injector operated with single and double injections. Two characterization methods, the momentum flux, and the Bosch tube are used and compared to investigate their suitability with the multiple injection strategies. Experiments with single injection are conducted by varying the Energizing Timing (ET) from 0.5 up to 2 ms. The tests with multiple injections (i.e., double injections) are conducted with a fixed ET of 0.5 ms, while the dwell times (δt) are varied from 0.1 up to 1 ms. All tests are performed at 500, 1000, 1500, and 2000 bar rail pressures. Depending on the injection pressure, the injector’s needle could not fully close with short dwell times and the injections are merged. The momentum flux method has faster ramp-up and decaying and more oscillations in the quasi-steady-state phase compared to the Bosch tube method. The effective duration of injection is overpredicted with the Bosch tube method. The momentum flux method is demonstrated to be more suitable for measuring the ROI of multiple injection strategies.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3