Study of dynamic hole-forming performance of a cup-hanging planter on a high-speed seedling transplanter

Author:

Yang Qizhi,Zhang Ruoyu,Jia Cuiping,Li Zhangyan,Zhu Menglan,Addy M.

Abstract

Due to the advantages of hole forming and transplanting at the same time, even on a film-covered field ridge, the cup-hanging transplanter has become one of the most widely used transplanters in agricultural operations. The cup-hanging planter is the main operating part of the transplanter. Different shapes of the hanging cup can affect the soil action mechanism, cavitation performance, and planting quality. In this study, the discrete element simulation software EDEM and the multi-body system dynamics analysis software RecurDyn are used to carry out the coupling simulation analysis. The results showed that the planting holes formed by hanging cups with two different shapes and under four different planting frequencies all met the planting requirements. After soil reflow, the transverse dimensions of the two holes are similar, and the longitudinal dimensions of the hole of the conical hanging cup are smaller than those of the multilateral hanging cup. Under the same planting frequency, the tear film size and hole-forming performance of the conical cup were better than those of the multilateral hanging cup. The result of the simulation test is consistent with that of the bench test, which proved the feasibility of using EDEM-RecurDyn coupling simulation to predict the hole-forming characteristics of the cup-hanging planter. The filmless hole-forming performances of two different shapes of hanging cups are close to each other. In terms of the film damage of film hole-forming, the conical cup is better than that of the multilateral hanging cup.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference27 articles.

1. Optimal design of planting mechanism in dibble transplanter [D] ChenX. 2014

2. A discrete element model for soil–sweep interaction in three different soils;Chen;Soil Tillage Res.,2013

3. Development status and trend of vegetable seed industry in China[J];Ding;China Veg.,2020

4. Analysis of international between lunar terrain-wheel and treated wheel by distinct element method[C];Fujii,2002

5. Analysis of hole forming process of flue-cured tobacco transplanting and optimization of machine structure [D] HuChangshou 2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3