Effects of Different Gasoline Additives on Fuel Consumption and Emissions in a Vehicle Equipped With the GDI Engine

Author:

Wen Mingsheng,Yin Zenghui,Zheng Zunqing,Liu Haifeng,Zhang Chuanqi,Cui Yanqing,Ming Zhenyang,Feng Lei,Yue Zongyu,Yao Mingfa

Abstract

Fuel additives are considered to be a cost-effective and simple approach to improve combustion and reduce the harmful emissions of internal combustion engines. In addition to the use of conventional fuel additives, some unconventional fuel additives also have potential to improve fuel properties. Exploring the effects of different unconventional additives can provide a valuable reference to improve vehicle performance by fuel optimization. In this study, five unconventional gasoline additives (i.e., isopropyl ether, aniline, diethylamine, dimethyl malonate and p-tert-butylphenol) were blended with the baseline gasoline (G92). The five blended fuels are referred to as G92-1, G92-2, G92-3, G92-4, and G92-5, respectively. Fuels with different additives were tested on a compact passenger vehicle with a 1.4-L gasoline direct injection engine to assess the effects of these additives on performance and emission characteristics, and G92 gasoline was compared as a baseline. The new European drive cycle (NEDC), which is representative for passenger car and light duty vehicles, was chosen in the tests. The experimental results show little or slight improvement in fuel consumption for fuels blended with additives. With respect to gaseous emissions, the vehicle obtains the lowest and highest NOx emissions by fueling G92-5 (blended with p-tert-butylphenol) and G92-3 (blended with diethylamine), respectively; the lowest and highest CO emission is acquired using G92-2 (blended with aniline) and G92-4 (blended with dimethyl malonate), respectively; the vehicle reaches the lowest and highest THC emissions when fueling G92-3 (blended with diethylamine) and G92-4 (blended with dimethyl malonate), respectively; and the lowest and highest CO2 emission using G92-3 (blended with diethylamine) and G92-2 (blended with aniline), respectively. Compared with the baseline gasoline fuel, all of the fuels with additives show improved engine-out PM emissions. Furthermore, all five additives can improve the acceleration performance slightly. In brief, diethylamine is potential gasoline additive to reduce carbon emissions, improve fuel consumption, and enhance performance.

Funder

National Natural Science Foundation of China

Science Fund for Distinguished Young Scholars of Tianjin

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3