Life Expectancy of Evaporating Capillary Bridges Predicted by Tertiary Creep Modeling

Author:

Guével Alexandre,Mielniczuk Boleslaw,Veveakis Manolis,Hueckel Tomasz

Abstract

The evaporation of capillary bridges is experimentally investigated at the microscale through a three-grain capillary cluster. This setting provides the minimum viable description of Haines jumps during evaporation, that is, capillary instabilities stemming from air entry into a saturated granular material. The displacement profile of a meniscus is obtained via digital image correlation for different grain materials, geometries, and separations. While it is well known that Haines jumps are triggered at the pore throat, we find that these instabilities are of three types depending on the separation. We also provide a temporal characterization of Haines jumps; we find that they are accurately described, as tertiary creep instabilities, by Voight’s relation, similarly to landslides and volcanic eruptions. This finding extends the description of capillary instabilities beyond their onset predicted by Laplace equilibrium. Our contribution also paves the way for a microscopically-informed description of desiccation cracks, of which Haines jumps are the precursors.

Funder

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3