Deriving the functional relation of input parameters in single-point incremental forming through dimensional analysis

Author:

Oraon Manish,Sharma Vinay

Abstract

The system is designed with the basics of fundamental units termed dimensional analysis (DA). The fundamental units are modeled to figure out some quantitative measures without the knowledge of the system behavior. Subsequently, the dimension analysis-based modeling helps to develop the functional relation of input parameters for the set objectives. The generalized model is validated with the output of experiments with an agreement to adopt the model within a certain range of error. Single-point incremental forming (SPIF) is an innovative sheet metal forming technique in which the metal sheets are shaped as desired without using dedicated dies. The SPIF investigations and declared results are desperately waiting for its industrial acceptability, but the optimization of the process is absent. The current study is to develop the functional relation of input parameters of SPIF through dimensional analysis. The investigation included statistical, ANN, and DA results for R in SPIF. Statistically, the step-down size (Δz; p = 0.005), area of tool end (A; p = 0.048), and wall angle (θ; p = 0.014) are found significant. The modified R-values are lower than the true and ANN modeled R, and its mean error is noted as 6.136. The functional relation confirmed that the step-down size and area of tool end are prominent factors for surface roughness and its influences on output are 150% and 100%, respectively.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference42 articles.

1. Force prediction for single point incremental forming deduced from experimental and FEM observations;Aerens;Int. J. Adv. Manuf. Technol.,2010

2. Grinding force modelling: Combining dimensional analysis with response surface methodology;Alauddin;Int. J. Manuf. Technol. Manag.,2007

3. An analytical model for improving precision in single point incremental forming;Ambrogio;J. Mater. Process. Technol.,2007

4. Prediction of incremental sheet forming process performance by using a neural network approach;Ambrogio;Int. J. Adv. Manuf. Technol.,2011

5. Some considerations on force trends in Incremental Forming of different materials;AmbrogioDuflou,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3