A numerical investigation exploring the potential role of porous fencing in reducing firebrand impingement on homes

Author:

Atwood Loren,Wagenbrenner Natalie

Abstract

Firebrand impingement is a leading cause of home ignitions from wildland fire. The use of porous fencing has recently been proposed as a potential method for mitigating firebrand impingement on homes. A porous fence can act as a windbreak to alter the near-surface flow and induce particle deposition, as demonstrated in other applications, such as the use of snow fences to protect roadways from drifting snow. Conservation advocates have proposed the use of fire-resistant vegetation to act as a fence upwind of homes or subdivisions. Porous fences could also be constructed from fire-resistant materials such as metal, rock, or composites. This numerical investigation of the effectiveness of porous fencing to reduce firebrand impingement on homes conducted a series of experiments to explore the effect of porous fencing on the near-surface flow field and firebrand transport downwind of the fence. We also evaluated the sensitivity of the results to various fence, flow, and firebrand properties, including fence height, fence porosity, wind speed, firebrand source location, and firebrand size. To our knowledge, this is the first study to investigate the concept of using a fence to induce firebrand deposition upwind of homes. Our results showed that porous fencing can reduce firebrand impingement on homes by up to 35% under certain conditions; however, fencing can also increase impingement on homes. The mitigation effectiveness depended on the proximity of the firebrand source, distance between the fence and home as a function of fence height, wind speed, and firebrand size. A series of key findings and recommendations are provided.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference32 articles.

1. Firebrand generation rates at the source for trees and a shrub;Adusumilli;Front. Mech. Eng.,2021

2. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy;Bailey;Bound. Layer. Meteorol.,2017

3. Numerical simulation study of a tree windbreak;Bitog;Biosyst. Eng.,2012

4. Defensible space. CAL FIRE website CAL FIRE (California Department of Forestry and Fire Protection) 2022

5. Preventing disaster: Home ignitability in the wildland-urban interface;Cohen;J. For.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3