Experimental investigation of shell and helical coiled heat exchanger with Al2O3 nano-fluid with wide range of particle concentration

Author:

Shabi Omar Ali,Alhazmy Majed,Negeed El-Sayed R.,Elzoghaly Khaled O.

Abstract

The purpose of this study is to experimentally enhance the heat exchange rate of the shell and helical coil tube heat exchanger by mixing water with aluminum oxide (Al2O3) nanoparticles, as well as to explore the effect of inlet thermal parameters on the performance of the heat exchanger. A test rig was constructed to investigate the influence of particle concentration, and inlet temperatures on the performance of nano-fluid. Parameters such as Nusselt number, pressure drop, performance evaluation criteria (PEC) are considered to rate the performance of the nano-particle with the heat exchanger. In this study a wider range of particle concentration is considered, which varies from 0.0%–0.75%. Experiments with and without nanoparticles are carried out under identical working conditions. By analyzing the experimental data, it was found that nanoparticles significantly improve the coefficient of heat transfer inside the helically coiled tube. From sensitivity analysis, it is obseerved that there is a slight decrease in Nusselt number of the nano-fluid with increase in inlet temperatures of the nano-fluid and the cooling water. Furthermore, it is concluded that an 8.5% increase in PEC value is observed with increase in particle concentration from 0.15% to 0.75%.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3