Machine learning for rock mechanics problems; an insight

Author:

Yu Hao,Taleghani Arash Dahi,Al Balushi Faras,Wang Hao

Abstract

Due to inherent heterogeneity of geomaterials, rock mechanics involved with extensive lab experiments and empirical correlations that often lack enough accuracy needed for many engineering problems. Machine learning has several characters that makes it an attractive choice to reduce number of required experiments or develop more effective correlations. The timeliness of this effort is supported by several recent technological advances. Machine learning, data analytics, and data management have expanded rapidly in many commercial sectors, providing an array of resources that can be leveraged for subsurface applications. In the last 15 years, deep learning in the form of deep neural networks, has been used very effectively in diverse applications, such as computer vision, seismic inversion, and natural language processing. Despite the remarkable success in these and related areas, deep learning has not yet been widely used in the field of scientific computing specially when it comes to subsurface applications due to the lack of large amount of data to train algorithms. In this paper, we review such efforts and try to envision future game-changing advances that may impact this field.

Publisher

Frontiers Media SA

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,General Materials Science

Reference116 articles.

1. Neural networks in civil engineering: 1989–2000;Adeli;Computer-Aided Civ. Infrastructure Eng.,2013

2. Numerical generation of stress-dependent permeability curves;Al Balushi,2020

3. Feed-forward neural networks for failure mechanics problems;Aldakheel;Appl. Sci.,2021

4. Characterizing fracture toughness using machine learning;Alipour;J. Pet. Sci. Eng.,2021

5. Prediction of porous media fluid flow using physics informed neural networks;Almajid;J. Petroleum Sci. Eng.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3