Activity Spaces and Big Data Sources in Segregation Research: A Methodological Review

Author:

Müürisepp Kerli,Järv Olle,Tammaru Tiit,Toivonen Tuuli

Abstract

The activity space approach is increasingly mobilized in spatial segregation research to broaden its scope from residential neighborhoods to other socio-spatial contexts of people. Activity space segregation research is an emerging field, characterized by quick adaptation of novel data sources and interdisciplinary methodologies. In this article, we present a methodological review of activity space segregation research by identifying approaches, methods and data sources applied. First, our review highlights that the activity space approach enables segregation to be studied from the perspectives of people, places and mobility flows. Second, the results reveal that both traditional data sources and novel big data sources are valuable for studying activity space segregation. While traditional sources provide rich background information on people for examining the social dimension of segregation, big data sources bring opportunities to address temporality, and increase the spatial extent and resolution of analysis. Hence, big data sources have an important role in mediating the conceptual change from a residential neighborhood-based to an activity space-based approach to segregation. Still, scholars should address carefully the challenges and uncertainties that big data entail for segregation studies. Finally, we propose a framework for a three-step methodological workflow for activity space segregation analysis, and outline future research avenues to move toward more conceptual clarity, integrated analysis framework and methodological rigor.

Funder

Koneen Säätiö

Academy of Finland

Eesti Teadusagentuur

Eesti Teaduste Akadeemia

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3