Novel Energy System Design Workflow for Zero-Carbon Energy District Development

Author:

Samadzadegan Bahador,Samareh Abolhassani Soroush,Dabirian Sanam,Ranjbar Saeed,Rasoulian Hadise,Sanei Azin,Eicker Ursula

Abstract

The growing urban population globally leads to higher greenhouse gas (GHG) emissions and stress on the electricity networks for meeting the increasing demand. In the early urban design stages, the optimization of the urban morphology and building physics characteristics can reduce energy demand. Local generation using renewable energy resources is also a viable option to reduce emissions and improve grid reliability. Notwithstanding, energy simulation and environmental impact assessment of urban building design strategies are usually not done until the execution planning stage. To address this research gap, a novel framework for designing energy systems for zero-carbon districts is developed. An urban building energy model is integrated with an urban energy system model in this framework. Dynamic prediction of heating and cooling demand and automatic sizing of different energy system configurations based on the calculated demands are the framework's primary capabilities. The workability of the framework has been tested on a case study for an urban area in Montreal to design and compare two different renewable energy systems comprising photovoltaic panels (PV), air-source, and ground source heat pumps. The case study results show that the urban building energy model could successfully predict the heating and cooling demands in multiple spatiotemporal resolutions, while the urban energy system model provides system solutions for achieving a zero-carbon or positive energy district.

Publisher

Frontiers Media SA

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3