How green is an urban tree? The impact of species selection in reducing the carbon footprint of park trees in Swedish cities

Author:

Lind Erik,Prade Thomas,Sjöman Deak Johanna,Levinsson Anna,Sjöman Henrik

Abstract

IntroductionPlanting trees in urban areas can mitigate some of the emissions generated in cities by carbon sequestration (annual uptake of CO2 through the process of photosynthesis) and carbon storage (amount of carbon stored in the tree's biomass throughout its lifespan). The aim of this study was to calculate the carbon footprint from nursery production to final establishment of different tree species grown for planting in urban parks in a northern European context.Material and methodsThe analysis included a cradle-to-gate approach and investigated the amount of carbon the adult trees needed to sequester in order to compensate for initial carbon emissions and which temporal perspectives are of concern. Greenhouse gas emissions were estimated based on an inventory of consumption of fuels, energy, materials and other production inputs during cultivation, delivery, planting and establishment of three different tree species in three different locations in Sweden. The tree species considered in the analysis (Salix alba, Quercus rubra, Pinus sylvestris) were selected due to significant differences in their growth rates. Salix alba is a competitive strategist in resource-rich habitats, and is proficient at converting these resources into vigorous growth. Pinus sylvestris is a pronounced stress strategist with good ability to handle resource-limited habitats, and invests in traits accordingly, resulting in significantly slower development. Quercus rubra has its main distribution in cool and moderately resource-rich habitats, but has relatively high stress tolerance and can be considered intermediate between the other two species in terms of growth rate.Results and discussionThe results showed that within 16 years of planting, all species in all three cities, except Pinus sylvestris planted in Umeå, compensated for initial carbon emissions, i.e. showed net absorption of CO2 after emissions from cultivation, delivery, planting and establishment of the trees had been deducted. There was a clear link between the time by which compensation of initial carbon emissions was achieved and growth rate of the different species, with the fast-growing Salix alba showing the best results. The single largest source of emissions among all activities carried out during cultivation, delivery and planting of all species, regardless of the city in which they were planted, was fuel consumption during tree planting.

Publisher

Frontiers Media SA

Subject

Public Administration,Urban Studies,Renewable Energy, Sustainability and the Environment

Reference57 articles.

1. PAS 20502008

2. GHG emissions from urbanization and opportunities for urban carbon mitigation;Dhakal;Curr. Opin. Environ. Sustain.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3