Optimal Operations Management of Mobility-on-Demand Systems

Author:

Wollenstein-Betech Salomón,Paschalidis Ioannis Ch.,Cassandras Christos G.

Abstract

The emergence of the sharing economy in urban transportation networks has enabled new fast, convenient and accessible mobility services referred to as Mobilty-on-Demand systems (e.g., Uber, Lyft, DiDi). These platforms have flourished in the last decade around the globe and face many operational challenges in order to be competitive and provide good quality of service. A crucial step in the effective operation of these systems is to reduce customers' waiting time while properly selecting the optimal fleet size and pricing policy. In this paper, we jointly tackle three operational decisions: (i) fleet size, (ii) pricing, and (iii) rebalancing, in order to maximize the platform's profit or its customers' welfare. To accomplish this, we first devise an optimization framework which gives rise to a static policy. Then, we elaborate and propose dynamic policies that are more responsive to perturbations such as unexpected increases in demand. We test this framework in a simulation environment using three case studies and leveraging traffic flow and taxi data from Eastern Massachusetts, New York City, and Chicago. Our results show that solving the problem jointly could increase profits between 1% and up to 50%, depending on the benchmark. Moreover, we observe that the proposed fleet size yield utilization of the vehicles in the fleet is around 75% compared to private vehicle utilization of 5%.

Funder

Division of Electrical, Communications and Cyber Systems

Division of Mathematical Sciences

Division of Information and Intelligent Systems

Division of Computer and Network Systems

Division of Civil, Mechanical and Manufacturing Innovation

Air Force Office of Scientific Research

Advanced Research Projects Agency - Energy

MathWorks

Office of Naval Research

National Institutes of Health

Publisher

Frontiers Media SA

Reference38 articles.

1. Pricing in ride-sharing platforms: a queueing-theoretic approach;Banerjee,2015

2. Spatial pricing in ride-sharing networks;Bimpikis;Operat. Res,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3