Insights into the regulation of hearing regeneration

Author:

Khalaily Lama,Avraham Karen B.

Abstract

Our perception of sound is mediated by sound-sensitive hair cells in the inner ear, located in a specialized neuro-epithelium that transmits information to the auditory cortex via the auditory pathway. A major cause of hearing loss is damage to and the death of these sensory hair cells. In humans, hair cells are only generated during embryonic development and cannot be replaced if damaged due to aging, excessive noise, ototoxic drugs, or illness. Much research is currently being invested worldwide in identifying methods to improve the ability to regenerate hair cells and circumvent their age-dependent limitations. Compared to numerous studies focused on gene therapy to restore deafness caused by a specific mutation before the onset of hair cell damage, research on auditory epigenetics is relatively recent. Although research indicates that epigenetic alterations play a crucial role in the differentiation, development, and regeneration of auditory hair cells, a dearth of comprehensive knowledge still exists regarding the specific role played by epigenetic modifications in the auditory system, with a particular emphasis on their potential correlation with the function and development of the auditory system. In addition, these modifications have been linked to the regeneration of hair cells caused by using pharmaceutical inhibitors (e.g., inhibition of the Notch pathway) and genetic (e.g., induced Atoh1 expression) treatments, which can lead to regenerating hair cells and restoring hearing. Recent developments in targetable epigenome-editing tools, such as CRISPR, and direct reprogramming enable targeted genome editing. In addition, the emergence of organoids and epigenetic drugs presents novel prospects for hearing restoration by manipulating regeneration pathways, making them promising methods for future regenerative treatments for hair cells. The potential of epigenetic modifiers as viable targets for pharmacological manipulation is becoming evident. Future therapies aimed at hair cell regeneration are particularly beneficial because of their advantage of restricting drug exposure within the inner ear.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3