The seven grand challenges in arachnid science

Author:

Kuntner Matjaž

Abstract

This perspective identifies the grand challenges in arachnid science: 1. Grasp the arachnid species diversity. There is a need to accelerate taxonomic research to obtain a sense of arachnid species diversity, however, at the same time, taxonomy needs to increase its quality, rigor, and repeatability. 2. Standardize arachnid systematics research. A solid phylogenetic definition and morphological diagnosis of Arachnida and its composing subgroups, usually treated at the rank of order, are needed. Studies should aim to stabilize and standardize phylogenetic efforts at all levels of hierarchy, and systematists should adopt criteria for higher level ranks in arachnid classification. 3. Interpret arachnid trait evolution through omics approaches. Among the field’s grand challenges is to define the genetic diversity encoding for the diverse arachnid traits, including developmental, morphological and ecological characteristics, biomaterials such as silks, venoms, digestive fluids, or allergens and bioproducts that cause diseases. Comparative genomics, transcriptomics, and proteomics will provide the empirical basis for biotechnology to modify arachnid genomes to fit numerous applications. 4. Facilitate biotechnological applications of arachnid molecules and biomaterials. Among the grand field challenges is to define potential applications of arachnid bioproducts from therapeutics to industry. New natural and biodegradable products, e.g. from spider silks, should ease our burden on ecosystems. 5. Utilize arachnids as models in ecological and biogeographic research. Biodiversity inventory sampling and analytical techniques should be extended from spiders to other arachnid groups. Spiders and their webs could be used as environmental DNA samplers, measuring or monitoring ecosystems’ overall biodiversity. Arachnids are excellent models to address biogeographical questions at the global to local scales. 6. Disentangle evolutionary drivers of arachnid diversity. Among the field grand challenges is a more precise evaluation to what extent the emergence of arachnid phenotypes is shaped by classical selection processes, and under what conditions, if any, sexual conflict needs to be invoked. 7. Define effective conservation measures for arachnids in the light of global changes. Effective conservation measures in arachnology should integrate the data from phylogenetic diversity, physiology, ecology, biogeography, and global change biology.

Publisher

Frontiers Media SA

Reference171 articles.

1. How many Arachnida and Myriapoda are there world-wide and in Amazonia;Adis;Stud. Neotrop. Fauna. Environ.,2000

2. Sociality in theridiid spiders: repeated origins of an evolutionary dead end;Agnarsson;Evol. (N. Y).,2006

3. Systematics: progress in the study of spider diversity and evolution;Agnarsson,2013

4. Taxonomy in a changing world: Seeking solutions for a science in crisis;Agnarsson;Syst. Biol.,2007

5. Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider;Agnarsson;PloS One,2010

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3