Using Telemetry Sensors Mapping the Energetic Costs in European Sea Bass (Dicentrarchus labrax), as a Tool for Welfare Remote Monitoring in Aquaculture

Author:

Alfonso Sébastien,Zupa Walter,Spedicato Maria Teresa,Lembo Giuseppe,Carbonara Pierluigi

Abstract

Physiological real-time monitoring could help to prevent health and welfare issues in farmed fishes. Among physiological features that can be of interest for such purposes, there is the metabolic rate. Its measurement remains, however, difficult to be implemented in the field. Thus, mapping the fish acceleration recorded by tag with the oxygen consumption rate (MO2) could be promising to counter those limitations and to be used as a proxy for energy expenditure in the aquaculture environments. In this study, we investigated the swimming performance (Ucrit) and the swimming efficiency (Uopt, COTmin), and we estimated the metabolic traits (standard and maximum metabolic rates, SMR and MMR, as well the absolute aerobic scope, AS) of European sea bass (Dicentrarchus labrax; n = 90) in swimming tunnel. Among all tested fish, 40 fishes were implanted with an acoustic transmitter to correlate the acceleration recorded by the sensor with the MO2. In this study, the mean SMR, MMR, and AS values displayed by sea bass were 89.8, 579.2, and 489.4 mgO2 kg−1 h−1, respectively. The Uopt and COTmin estimated for sea bass were on average 1.94 km h−1 and 113.91 mgO2 kg−1 h−1, respectively. Overall, implantation of the sensor did not alter fish swimming performance or induced particular stress, able to increase MO2 or decrease swimming efficiency in tagged fish. Finally, acceleration recorded by tag has been successfully correlated with MO2 and fish mass using a sigmoid function (R2 = 0.88). Overall, such results would help for real-time monitoring of European sea bass health or welfare in the aquaculture environment in a framework of precision livestock farming.

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3