Cooling temperature humidity index-days as a heat load indicator for milk production traits

Author:

Mbuthia Jackson M.,Eggert Anja,Reinsch Norbert

Abstract

Well-defined and accurate climatic indicators are important for evaluating heat stress in dairy cattle. This is imperative for sound management decisions for mitigating production losses. The most popular indicator for heat stress is the temperature humidity index (THI). Other heat stress indicators have been developed but remain largely unexploited. There is, therefore, possibly room to improve the THI and explore new indicators suitable for predicting production losses due to heat stress in dairy cattle. In this study, we apply the degree-day concept to develop temperature humidity index-day (THI-day). We defined the cooling THI-day as the hourly cumulative THI units above the heat stress threshold for milk production traits over the entire day. We then modeled reaction norms for cooling THI-day to analyze the effect of cumulative heat load expressed by THI-day on milk production traits. Milk performance records were from 16,216,145 monthly test-day records for the Fleckvieh breed for the period 2010 to 2019 in southern Bavaria, Germany. Individual cow records were averaged by herd and test-day resulting in 797,455 herd test-day records from 9,726 herds. Weather data for the same period were provided by the German Meteorological Service. Results indicated that cooling THI-day provided significant (p < 0.001) additional information to the conventional THI models. We found out that reaction norm models of average herd milk yield that do not account for the cumulative heat load tend to underestimate the effects of heat stress on milk production traits. Reaction norms modeled with cooling THI-day were more plausible for milk production traits that have a defined heat stress threshold including milk yield, protein yield, and milk urea.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3