Determining the Effects of Environmental Events on Cultured Atlantic Salmon Behaviour Using 3-Dimensional Acoustic Telemetry

Author:

Stockwell Caitlin L.,Filgueira Ramón,Grant Jon

Abstract

The health and welfare of farmed fish are highly dependent on environmental conditions. Under suboptimal conditions, the negative impact on welfare can cause changes in fish behaviour. Acoustic tags can provide high resolution and high frequency data to monitor fish positioning within the cage, which can be used to infer swimming behaviour. In this study, implanted acoustic tags were used to monitor the three-dimensional positioning of Atlantic salmon (Salmo salar) at a commercial farm in Nova Scotia, Canada. The one-month study period allowed the characterisation of background behaviour and changes in behaviour in relation to different environmental conditions, namely, water characteristics in terms of dissolved oxygen and temperature caused by the fall overturn, storm conditions, and feeding activity. The three-dimensional position of 15 fish was recorded using high temporal resolution (3 s). Fish movement was characterised by calculating four fish variables: distance from the centre of the cage [m], depth [m], velocity [ms−1], and turning angle [°]. The population swam in a counterclockwise swimming direction around 4 ± 2 m depth at an average speed of 0.61 ± 0.38 ms−1. After the fall overturn, the population moved significantly towards cage centre while decreasing velocity, and non-significant differences in depth and turning angle were observed. During feeding periods, a significant increase in depth and velocity, as well as a reduction in turning angle were observed. The storm event did not cause any significant change in the four fish variables. While some of the behavioural changes were difficult to assess with respect to causation, the high resolution, high frequency data provide unique detailed positioning information to further our understanding of the swimming behaviour of farmed fish.

Funder

Ocean Frontier Institute

Natural Sciences and Engineering Research Council of Canada

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3