Detecting Ultra- and Circadian Activity Rhythms of Dairy Cows in Automatic Milking Systems Using the Degree of Functional Coupling—A Pilot Study

Author:

Fuchs Patricia,Adrion Felix,Shafiullah Abu Z. M.,Bruckmaier Rupert M.,Umstätter Christina

Abstract

Ultra- and circadian activity rhythms of animals can provide important insights into animal welfare. The consistency of behavioral patterns is characteristic of healthy organisms, while changes in the regularity of behavioral rhythms may indicate health and stress-related challenges. This pilot study aimed to examine whether dairy cows in free-stall barns with an automatic milking system (AMS) and free cow traffic can develop ultra- and circadian activity rhythms. On 4 dairy farms, pedometers recorded the activity of 10 cows each over 28 days. Based on time series calculation, the Degree of Functional Coupling (DFC) was used to determine the cows' activity rhythms. The DFC identified significant rhythmic patterns in sliding 7-day periods and indicated the percentage of activity (0–100%) that was synchronized with the 24-h day-night rhythm. As light is the main factor influencing the sleep-wake cycle of organisms, light intensity was recorded in the AMS, at the feed alley and in the barn of each farm. In addition, feeding and milking management were considered as part of the environmental context. Saliva samples of each cow were taken every 3 h for 1 day to determine the melatonin concentration. The DFC approach was successfully used to detect activity rhythms of dairy cows in commercial housing systems. However, large inter- and intra-individual variations were observed. Due to a high frequency of 0 and 100%, a median split was used to dichotomize into “low” (<72.34%) and “high” (≥72.34%) DFC. Forty percent of the sliding 7-day periods corresponded to a low DFC and 50% to a high DFC. No DFC could be calculated for 10% of the periods, as the cows' activity was not synchronized to 24 h. A generalized linear mixed-effects model revealed that the DFC levels were positively associated with a longer milking interval and a higher amount of daytime activity and negatively associated with higher number of lactations. The DFC is a novel approach to animal behavior monitoring. Due to its automation capability, it represents a promising tool in its further development for the purpose of longitudinal monitoring of animal welfare.

Publisher

Frontiers Media SA

Reference52 articles.

1. A brief review about melatonin, a pineal hormone;Amaral;Arch. Endocrinol. Metabol,2018

2. Effects of melatonin on the yield and composition of milk from grazing dairy cows in New Zealand;Auldist;J. Dairy Res.,2007

3. The effects of amplitude and stability of circadian rhythm and occupational stress on burnout syndrome and job dissatisfaction among irregular shift working nurses;Bagheri Hosseinabadi;J Clin Nurs,2019

4. Studying and modelling dynamic biological processes using time-series gene expression data;Bar-Joseph;Nat. Rev. Genet.,2012

5. BatesD. MaechlerM. BolkerB. WalkerS. ChristensenR. H. B. SingmannH. Linear Mixed-Effects Models using ‘Eigen’ and S42022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3