Lipopolysaccharide-induced alterations in the liver metabolome of St. Croix and Suffolk sheep

Author:

Johnson Samanthia R.,Bentley Kelsey,Bowdridge Scott,Ogunade Ibukun M.

Abstract

The development of resistance in parasites due to overuse of anthelmintics has resulted in a marked decrease in the efficacy of these drug classes. Recent research efforts have focused on exploring alternatives such as selection for parasite-resistant breeds with the implication that immunocompetence may align with parasite resistance. Two breeds that are often investigated are the St. Croix (STC), a resistant hair breed, and Suffolk (SUF), a susceptible wool breed sheep. The liver plays a vital role in metabolism in the body and metabolizes lipopolysaccharide (LPS), which triggers whole body response through the production of appropriate metabolites, cytokines and immune cells. The objective of this study was to investigate the breed differences in liver metabolome of sheep, with divergent resistance to parasites, in response to LPS. Both STC and SUF sheep (n = 9/breed) were challenged with LPS intravenously. Rectal temperatures and sheep grimace score (SGS) were recorded hourly, for each animal, and averaged across the study for both breeds. The average rectal temperature throughout the study was similar for STC and SUF sheep (40.4°C and 40.2°C respectively), but the pattern of response was different. STC had an average SGS of 0.8 while SUF had an average of 3.3. Liver biopsies were collected from 3 sheep that were not challenged with LPS (HR0; n = 3/breed), two hours post-challenge (HR2; n = 3/breed), and six hours post-challenge (HR6; n = 3/breed). Liver tissue samples were subjected to quantitative untargeted metabolome analysis using chemical isotope labeling/liquid chromatography-mass spectrometry. Pathway analysis of the HR0 metabolome data revealed that 8 pathways (and their associated metabolites) including beta-alanine metabolism, arginine and proline metabolism and glutathione metabolism were altered (false discovery rate-adjusted P-value (FDR) ≤ 0.05) between STC and SUF sheep. At HR2, 10 altered pathways such as folate biosynthesis, taurine and hypotaurine metabolism, and glutathione metabolism. At HR6, only 2 pathways (glycerophospholipid metabolism and purine metabolism) were altered (FDR ≤ 0.05) between STC and SUF sheep. Results highlight the differences in hepatic metabolome and physiological response to LPS challenge that exist between SUF and STC. These findings suggest breed-specific differences in metabolic response to immune challenge, potentially influencing the divergent resistance of the two breeds to parasitic infections.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3