Glucose and Fatty Acid Metabolism of Dairy Cows in a Total Mixed Ration or Pasture-Based System During Lactation

Author:

García-Roche Mercedes,Cañibe Guillermo,Casal Alberto,Mattiauda Diego A.,Ceriani Mateo,Jasinsky Alejandra,Cassina Adriana,Quijano Celia,Carriquiry Mariana

Abstract

In this study, we explored mechanisms related to glucose and fatty acid metabolism in Holstein–Friesian multiparous dairy cows during lactation under two feeding strategies. From 0 to 180 days postpartum, cows were fed total mixed ration (TMR) ad libitum (non-grazing group, G0) or grazed Festuca arundinacea or Medicago sativa and were supplemented with 5.4 kg DM/d of an energy-protein concentrate (grazing group, G1). From 180 to 250 days postpartum, all cows grazed F. arundinacea and were supplemented with TMR. Plasma samples and liver biopsies were collected at −14, 35, 60, 110, 180, and 250 days in milk (DIM) for metabolite, hormone, gene expression, and western blot analysis. Our results showed increased levels of negative energy balance markers: plasma non-esterified fatty acids (NEFA), liver triglyceride and plasma β-hydroxybutyrate (BHB) (P < 0.01), triglyceride and β-hydroxybutyrate concentration were especially elevated for G1 cows. Also, hepatic mRNA expression of gluconeogenic enzymes was upregulated during early lactation (P < 0.05). In particular, methymalonyl-CoA mutase expression was increased for G0 cows (P < 0.05) while pyruvate carboxylase (PC) expression was increased for G1 cows (P < 0.05), suggesting differential gluconeogenic precursors for different feeding strategies. Phosphorylation of AMP-activated protein kinase was increased in early lactation vs. late lactation (P < 0.01) and negatively correlated with PC mRNA levels. The positive association of gluconeogenic genes with proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) hepatic expression supported the importance of this transcription factor in glucose metabolism. The peroxisome proliferator-activated receptor alpha (PPARA) mRNA was increased during early lactation (P < 0.05), and was positively associated to PPARGC1A, carnitine palmitoyl-transferase 1, and hydroxymethylglutaryl-CoA synthase 2 (HMGCS2) mRNA expression. Alongside, hepatic mRNA expression of FABP was decreased for G1 vs. G0 cows (P < 0.05), possibly linked to impaired fatty acid transport and related to accumulation of liver triglycerides, evidencing G1 cows fail to adapt to the demands of early lactation. In sum, our results showed that metabolic adaptations related to early lactation negative energy balance can be affected by feeding strategy and might be regulated by the metabolic sensors AMPK, SIRT1, and coordinated by transcription factors PPARGC1A and PPARA.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3