Individual Detection and Tracking of Group Housed Pigs in Their Home Pen Using Computer Vision

Author:

van der Zande Lisette. E.,Guzhva Oleksiy,Rodenburg T. Bas

Abstract

Modern welfare definitions not only require that the Five Freedoms are met, but animals should also be able to adapt to changes (i. e., resilience) and reach a state that the animals experience as positive. Measuring resilience is challenging since relatively subtle changes in animal behavior need to be observed 24/7. Changes in individual activity showed potential in previous studies to reflect resilience. A computer vision (CV) based tracking algorithm for pigs could potentially measure individual activity, which will be more objective and less time consuming than human observations. The aim of this study was to investigate the potential of state-of-the-art CV algorithms for pig detection and tracking for individual activity monitoring in pigs. This study used a tracking-by-detection method, where pigs were first detected using You Only Look Once v3 (YOLOv3) and in the next step detections were connected using the Simple Online Real-time Tracking (SORT) algorithm. Two videos, of 7 h each, recorded in barren and enriched environments were used to test the tracking. Three detection models were proposed using different annotation datasets: a young model where annotated pigs were younger than in the test video, an older model where annotated pigs were older than the test video, and a combined model where annotations from younger and older pigs were combined. The combined detection model performed best with a mean average precision (mAP) of over 99.9% in the enriched environment and 99.7% in the barren environment. Intersection over Union (IOU) exceeded 85% in both environments, indicating a good accuracy of the detection algorithm. The tracking algorithm performed better in the enriched environment compared to the barren environment. When false positive tracks where removed (i.e., tracks not associated with a pig), individual pigs were tracked on average for 22.3 min in the barren environment and 57.8 min in the enriched environment. Thus, based on proposed tracking-by-detection algorithm, pigs can be tracked automatically in different environments, but manual corrections may be needed to keep track of the individual throughout the video and estimate activity. The individual activity measured with proposed algorithm could be used as an estimate to measure resilience.

Publisher

Frontiers Media SA

Reference28 articles.

1. Development of a real-time computer vision system for tracking loose-housed pigs;Ahrendt;Comput. Electr. Agric.,2011

2. Car detection using unmanned aerial vehicles: comparison between faster r-cnn and yolov3;Benjdira,2019

3. Opportunities to improve resilience in animal breeding programs;Berghof;Front. Genet,2019

4. Simple online and realtime tracking;Bewley,2016

5. BrackeM. B. M. RodenburgT. B. VermeerH. M. van NiekerT. G. C. M. Towards a Common Conceptual Framework and Illustrative Model for Feather Pecking in Poultry and Tail Biting in Pigs-Connecting Science to Solutions2018

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3