Determining calf traceability and cow–calf relationships in extensive farming using geolocation collars and BLE ear tags

Author:

Vidal-Cardos Roger,Fàbrega Emma,Dalmau Antoni

Abstract

Extensive farming is often considered very beneficial to animals for its potential to enhance animal welfare, providing animals with free-range access to their natural environment where they can engage in innate behaviors like grazing and exploration. However, despite these benefits, extensive production still faces welfare and health challenges due to unpredictable weather conditions and limited supervision by stockholders. Moreover, increasing consumer demand for information regarding food quality, safety, and production conditions poses a challenge for extensive farming, where animals are less controlled. Precision livestock farming (PLF) emerges as a possible solution by enabling the continuous real-time monitoring of the health, welfare, and behavior of animals. A novel approach combining geolocation collars for cows and Bluetooth low energy (BLE) ear tags for calves appears promising to enhance traceability and monitoring in extensive farming. Nevertheless, challenges persist, including limitations in the data transmission capacity and associated costs. This study evaluated the effectiveness of combining geolocation collars and BLE ear tags for monitoring calf traceability and cow–calf relationships across three scenarios: 1) Equilibrated: same collar/ear tag ratio; good coverage; 2) intermediate: more collars than ear tags; fair coverage; 3) worst: more ear tags than collars; lousy coverage. Our results indicate that the equilibrated scenario (ES) with an equal number of geolocation collars and BLE ear tags, was the best scenario, demonstrating the highest fix rate (22%) and the longest mean consecutive days of detecting the same ear tag (22.30 days), followed by the intermediate scenario (IS) and the worst scenario. In all scenarios, there was a mean period of 14–15 d without detecting a calf. However, this shortcoming can be overcome as calves usually graze alongside their mothers, ensuring comprehensive traceability in farm breeding. Additionally, by comparing differences in the number of ear tags received from offspring compared to other calves, the BLE ear tags successfully associated every mother with their calf in the ES and IS. Finally, this valuable information, would enable the development of a traceability system that ensures transparency and reliability throughout the supply chain and could allow consumers to access to product information related to animal welfare.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3