EEG-based emotion recognition using hybrid CNN and LSTM classification

Author:

Chakravarthi Bhuvaneshwari,Ng Sin-Chun,Ezilarasan M. R.,Leung Man-Fai

Abstract

Emotions are a mental state that is accompanied by a distinct physiologic rhythm, as well as physical, behavioral, and mental changes. In the latest days, physiological activity has been used to study emotional reactions. This study describes the electroencephalography (EEG) signals, the brain wave pattern, and emotion analysis all of these are interrelated and based on the consequences of human behavior and Post-Traumatic Stress Disorder (PTSD). Post-traumatic stress disorder effects for long-term illness are associated with considerable suffering, impairment, and social/emotional impairment. PTSD is connected to subcortical responses to injury memories, thoughts, and emotions and alterations in brain circuitry. Predominantly EEG signals are the way of examining the electrical potential of the human feelings cum expression for every changing phenomenon that the individual faces. When going through literature there are some lacunae while analyzing emotions. There exist some reliability issues and also masking of real emotional behavior by the victims. Keeping this research gap and hindrance faced by the previous researchers the present study aims to fulfill the requirements, the efforts can be made to overcome this problem, and the proposed automated CNN-LSTM with ResNet-152 algorithm. Compared with the existing techniques, the proposed techniques achieved a higher level of accuracy of 98% by applying the hybrid deep learning algorithm.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3