Free-Energy Model of Emotion Potential: Modeling Arousal Potential as Information Content Induced by Complexity and Novelty

Author:

Yanagisawa Hideyoshi

Abstract

Appropriate levels of arousal potential induce hedonic responses (i.e., emotional valence). However, the relationship between arousal potential and its factors (e.g., novelty, complexity, and uncertainty) have not been formalized. This paper proposes a mathematical model that explains emotional arousal using minimized free energy to represent information content processed in the brain after sensory stimuli are perceived and recognized (i.e., sensory surprisal). This work mathematically demonstrates that sensory surprisal represents the summation of information from novelty and uncertainty, and that the uncertainty converges to perceived complexity with sufficient sampling from a stimulus source. Novelty, uncertainty, and complexity all act as collative properties that form arousal potential. Analysis using a Gaussian generative model shows that the free energy is formed as a quadratic function of prediction errors based on the difference between prior expectation and peak of likelihood. The model predicts two interaction effects on free energy: that between prediction error and prior uncertainty (i.e., prior variance) and that between prediction error and sensory variance. A discussion on the potential of free energy as a mathematical principle is presented to explain emotion initiators. The model provides a general mathematical framework for understanding and predicting the emotions caused by novelty, uncertainty, and complexity. The mathematical model of arousal can help predict acceptable novelty and complexity based on a target population under different uncertainty levels mitigated by prior knowledge and experience.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference38 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3