GAPCNN with HyPar: Global Average Pooling convolutional neural network with novel NNLU activation function and HYBRID parallelism

Author:

Habib Gousia,Qureshi Shaima

Abstract

With the increasing demand for deep learning in the last few years, CNNs have been widely used in many applications and have gained interest in classification, regression, and image recognition tasks. The training of these deep neural networks is compute-intensive and takes days or even weeks to train the model from scratch. The compute-intensive nature of these deep neural networks sometimes limits the practical implementation of CNNs in real-time applications. Therefore, the computational speedup in these networks is of utmost importance, which generates interest in CNN training acceleration. Much research is going on to meet the computational requirement and make it feasible for real-time applications. Because of its simplicity, data parallelism is used primarily, but it performs badly sometimes. In most cases, researchers prefer model parallelism to data parallelism, but it is not always the best choice. Therefore, in this study, we implement a hybrid of both data and model parallelism to improve the computational speed without compromising accuracy. There is only a 1.5% accuracy drop in our proposed study with an increased speed up of 3.62X. Also, a novel activation function Normalized Non-linear Activation Unit NNLU is proposed to introduce non-linearity in the model. The activation unit is non-saturated and helps avoid the model's over-fitting. The activation unit is free from the vanishing gradient problem. Also, the fully connected layer in the proposed CNN model is replaced by the Global Average Pooling layers (GAP) to enhance the model's accuracy and computational performance. When tested on a bio-medical image dataset, the model achieves an accuracy of 98.89% and requires a training time of only 1 s. The model categorizes medical images into different categories of glioma, meningioma, and pituitary tumor. The model is compared with existing state-of-art techniques, and it is observed that the proposed model outperforms others in classification accuracy and computational speed. Also, results are observed for different optimizers', different learning rates, and various epoch numbers.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference43 articles.

1. Parallel-CNN network for malware detection;Bakhshinejad;IET Inform. Sec,2020

2. Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning;Chen;ACM SIGARCH Comput. Arch. News

3. “Dadiannao: a machine-learning supercomputer,”;Chen

4. Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks;Chen;IEEE J. Solid State Circ,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3