Dynamic probability integration for electroencephalography-based rapid serial visual presentation performance enhancement: Application in nighttime vehicle detection

Author:

Cui Yujie,Xie Songyun,Xie Xinzhou,Zhang Xiaowei,Liu Xianghui

Abstract

BackgroundRapid serial visual presentation (RSVP) has become a popular target detection method by decoding electroencephalography (EEG) signals, owing to its sensitivity and effectiveness. Most current research on EEG-based RSVP tasks focused on feature extraction algorithms developed to deal with the non-stationarity and low signal-to-noise ratio (SNR) of EEG signals. However, these algorithms cannot handle the problem of no event-related potentials (ERP) component or miniature ERP components caused by the attention lapses of human vision in abnormal conditions. The fusion of human-computer vision can obtain complementary information, making it a promising way to become an efficient and general way to detect objects, especially in attention lapses.MethodsDynamic probability integration (DPI) was proposed in this study to fuse human vision and computer vision. A novel basic probability assignment (BPA) method was included, which can fully consider the classification capabilities of different heterogeneous information sources for targets and non-targets and constructs the detection performance model for the weight generation based on classification capabilities. Furthermore, a spatial-temporal hybrid common spatial pattern-principal component analysis (STHCP) algorithm was designed to decode EEG signals in the RSVP task. It is a simple and effective method of distinguishing target and non-target using spatial-temporal features.ResultsA nighttime vehicle detection based on the RSVP task was performed to evaluate the performance of DPI and STHCP, which is one of the conditions of attention lapses because of its decrease in visual information. The average AUC of DPI was 0.912 ± 0.041 and increased by 11.5, 5.2, 3.4, and 1.7% compared with human vision, computer vision, naive Bayesian fusion, and dynamic belief fusion (DBF), respectively. A higher average balanced accuracy of 0.845 ± 0.052 was also achieved using DPI, representing that DPI has the balanced detection capacity of target and non-target. Moreover, STHCP obtained the highest AUC of 0.818 ± 0.06 compared with the other two baseline methods and increased by 15.4 and 23.4%.ConclusionExperimental results indicated that the average AUC and balanced accuracy of the proposed fusion method were higher than individual detection methods used for fusion, as well as two excellent fusion methods. It is a promising way to improve detection performance in RSVP tasks, even in abnormal conditions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3