Toward a causal model of chronic back pain: Challenges and opportunities

Author:

Huie J. Russell,Vashisht Rohit,Galivanche Anoop,Hadjadj Constance,Morshed Saam,Butte Atul J.,Ferguson Adam R.,O'Neill Conor

Abstract

Chronic low back pain (cLBP) afflicts 8. 2% of adults in the United States, and is the leading global cause of disability. Neuropsychiatric co-morbidities including anxiety, depression, and substance abuse- are common in cLBP patients. In particular, cLBP is a risk factor for opioid addiction, as more than 50% of opioid prescriptions in the United States are for cLBP. Misuse of these prescriptions is a common precursor to addiction. While associations between cLBP and neuropsychiatric disorders are well established, causal relationships for the most part are unknown. Developing effective treatments for cLBP, and associated co-morbidities, requires identifying and understanding causal relationships. Rigorous methods for causal inference, a process for quantifying causal effects from observational data, have been developed over the past 30 years. In this review we first discuss the conceptual model of cLBP that current treatments are based on, and how gaps in causal knowledge contribute to poor clinical outcomes. We then present cLBP as a “Big Data” problem and identify how advanced analytic techniques may close knowledge gaps and improve clinical outcomes. We will focus on causal discovery, which is a data-driven method that uses artificial intelligence (AI) and high dimensional datasets to identify causal structures, discussing both constraint-based (PC and Fast Causal Inference) and score-based (Fast Greedy Equivalent Search) algorithms.

Funder

National Institutes of Health

U.S. Department of Veterans Affairs

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3