An N400 identification method based on the combination of Soft-DTW and transformer

Author:

Ma Yan,Tang Yiou,Zeng Yang,Ding Tao,Liu Yifu

Abstract

As a time-domain EEG feature reflecting the semantic processing of the human brain, the N400 event-related potentials still lack a mature classification and recognition scheme. To address the problems of low signal-to-noise ratio and difficult feature extraction of N400 data, we propose a Soft-DTW-based single-subject short-distance event-related potential averaging method by using the advantages of differentiable and efficient Soft-DTW loss function, and perform partial Soft-DTW averaging based on DTW distance within a single-subject range, and propose a Transformer-based ERP recognition classification model, which captures contextual information by introducing location coding and a self-attentive mechanism, combined with a Softmax classifier to classify N400 data. The experimental results show that the highest recognition accuracy of 0.8992 is achieved on the ERP-CORE N400 public dataset, verifying the effectiveness of the model and the averaging method.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference31 articles.

1. Event related potential analysis using machine learning to predict diagnostic outcome of autism spectrum disorder;Abou-Abbas;Proceedings of the international conference on bioengineering and biomedical signal and image processing,2021

2. Dynamic time warping based connectivity classification of event-related potentials;Al-rubaye;Proceedings of the 2019 medical technologies congress (TIPTEKNO),2019

3. Classification and recognition of P300 event related potential based on convolutional neural network.;Chou;Chin. J. Biomed. Eng.,2018

4. Soft-dtw: A differentiable loss function for time-series;Cuturi;Proceedings of the international conference on machine learning,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3