A neural network model for timing control with reinforcement

Author:

Wang Jing,El-Jayyousi Yousuf,Ozden Ilker

Abstract

How do humans and animals perform trial-and-error learning when the space of possibilities is infinite? In a previous study, we used an interval timing production task and discovered an updating strategy in which the agent adjusted the behavioral and neuronal noise for exploration. In the experiment, human subjects proactively generated a series of timed motor outputs. Positive or negative feedback was provided after each response based on the timing accuracy. We found that the sequential motor timing varied at two temporal scales: long-term correlation around the target interval due to memory drifts and short-term adjustments of timing variability according to feedback. We have previously described these two key features of timing variability with an augmented Gaussian process, termed reward-sensitive Gaussian process (RSGP). In a nutshell, the temporal covariance of the timing variable was updated based on the feedback history to recreate the two behavioral characteristics mentioned above. However, the RSGP was mainly descriptive and lacked a neurobiological basis of how the reward feedback can be used by a neural circuit to adjust motor variability. Here we provide a mechanistic model and simulate the process by borrowing the architecture of recurrent neural networks (RNNs). While recurrent connection provided the long-term serial correlation in motor timing, to facilitate reward-driven short-term variations, we introduced reward-dependent variability in the network connectivity, inspired by the stochastic nature of synaptic transmission in the brain. Our model was able to recursively generate an output sequence incorporating internal variability and external reinforcement in a Bayesian framework. We show that the model can generate the temporal structure of the motor variability as a basis for exploration and exploitation trade-off. Unlike other neural network models that search for unique network connectivity for the best match between the model prediction and observation, this model can estimate the uncertainty associated with each outcome and thus did a better job in teasing apart adjustable task-relevant variability from unexplained variability. The proposed artificial neural network model parallels the mechanisms of information processing in neural systems and can extend the framework of brain-inspired reinforcement learning (RL) in continuous state control.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3