A comparative analysis of masking empirical mode decomposition and a neural network with feed-forward and back propagation along with masking empirical mode decomposition to improve the classification performance for a reliable brain-computer interface

Author:

Jaipriya D.,Sriharipriya K. C.

Abstract

In general, extraction and classification are used in various fields like image processing, pattern recognition, signal processing, and so on. Extracting effective characteristics from raw electroencephalogram (EEG) signals is a crucial role of the brain-computer interface for motor imagery. Recently, there has been a great deal of focus on motor imagery in the EEG signals since they encode a person’s intent to do an action. Researchers have been using MI signals to assist paralyzed people and even move them on their own with certain equipment, like wheelchairs. As a result, proper decoding is an important step required for the interconnection of the brain and the computer. EEG decoding is a challenging process because of poor SNR, complexity, and other reasons. However, choosing an appropriate method to extract the features to improve the performance of motor imagery recognition is still a research hotspot. To extract the features of the EEG signal in the classification task, this paper proposes a Masking Empirical Mode Decomposition (MEMD) based Feed Forward Back Propagation Neural Network (MEMD-FFBPNN). The dataset consists of EEG signals which are first normalized using the minimax method and given as input to the MEMD to extract the features and then given to the FFBPNN to classify the tasks. The accuracy of the proposed method MEMD-FFBPNN has been measured using the confusion matrix, mean square error and which has been recorded up to 99.9%. Thus, the proposed method gives better accuracy than the other conventional methods.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3