Information bottleneck-based Hebbian learning rule naturally ties working memory and synaptic updates

Author:

Daruwalla Kyle,Lipasti Mikko

Abstract

Deep neural feedforward networks are effective models for a wide array of problems, but training and deploying such networks presents a significant energy cost. Spiking neural networks (SNNs), which are modeled after biologically realistic neurons, offer a potential solution when deployed correctly on neuromorphic computing hardware. Still, many applications train SNNs offline, and running network training directly on neuromorphic hardware is an ongoing research problem. The primary hurdle is that back-propagation, which makes training such artificial deep networks possible, is biologically implausible. Neuroscientists are uncertain about how the brain would propagate a precise error signal backward through a network of neurons. Recent progress addresses part of this question, e.g., the weight transport problem, but a complete solution remains intangible. In contrast, novel learning rules based on the information bottleneck (IB) train each layer of a network independently, circumventing the need to propagate errors across layers. Instead, propagation is implicit due the layers' feedforward connectivity. These rules take the form of a three-factor Hebbian update a global error signal modulates local synaptic updates within each layer. Unfortunately, the global signal for a given layer requires processing multiple samples concurrently, and the brain only sees a single sample at a time. We propose a new three-factor update rule where the global signal correctly captures information across samples via an auxiliary memory network. The auxiliary network can be trained a priori independently of the dataset being used with the primary network. We demonstrate comparable performance to baselines on image classification tasks. Interestingly, unlike back-propagation-like schemes where there is no link between learning and memory, our rule presents a direct connection between working memory and synaptic updates. To the best of our knowledge, this is the first rule to make this link explicit. We explore these implications in initial experiments examining the effect of memory capacity on learning performance. Moving forward, this work suggests an alternate view of learning where each layer balances memory-informed compression against task performance. This view naturally encompasses several key aspects of neural computation, including memory, efficiency, and locality.

Funder

Air Force Research Laboratory

National Science Foundation

Publisher

Frontiers Media SA

Reference35 articles.

1. Learning cortical hierarchies with temporal Hebbian updates;Aceituno;Front. Comput. Neurosci,2023

2. GAIT-prop: a biologically plausible learning rule derived from backpropagation of error;Ahmad;Adv. Neur. Inf. Process. Syst,2020

3. Deep learning without weight transport;Akrout;Adv. Neur. Inf. Process. Syst,2019

4. “Kickback cuts Backprop's red-tape: biologically plausible credit assignment in neural networks,”;Balduzzi;Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,2015

5. Greedy layerwise learning can scale to ImageNet;Belilovsky;Proc. Mach. Learn. Res,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3