Simple and complex cells revisited: toward a selectivity-invariance model of object recognition

Author:

Li Xin,Wang Shuo

Abstract

This paper presents a theoretical perspective on modeling ventral stream processing by revisiting the computational abstraction of simple and complex cells. In parallel to David Marr's vision theory, we organize the new perspective into three levels. At the computational level, we abstract simple and complex cells into space partitioning and composition in a topological space based on the redundancy exploitation hypothesis of Horace Barlow. At the algorithmic level, we present a hierarchical extension of sparse coding by exploiting the manifold constraint in high-dimensional space (i.e., the blessing of dimensionality). The resulting over-parameterized models for object recognition differ from existing hierarchical models by disentangling the objectives of selectivity and invariance computation. It is possible to interpret our hierarchical construction as a computational implementation of cortically local subspace untangling for object recognition and face representation, which are closely related to exemplar-based and axis-based coding in the medial temporal lobe. At the implementation level, we briefly discuss two possible implementations based on asymmetric sparse autoencoders and divergent spiking neural networks.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference98 articles.

1. On the Surprising Behavior of Distance Metrics in High Dimensional Space

2. K-svd: an algorithm for designing overcomplete dictionaries for sparse representation;Aharon;IEEE Transact. Signal Process,2006

3. “Approximate nearest neighbors and the fast johnson-lindenstrauss transform,”;Ailon;Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing,2006

4. “A convergence theory for deep learning via over-parameterization,”;Allen-Zhu;International Conference on Machine Learning, vol. 97,2019

5. “On the optimization of deep networks: Implicit acceleration by overparameterization,”;Arora;International Conference on Machine Learning, vol. 80,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3