Reinforcement learning-based SDN routing scheme empowered by causality detection and GNN

Author:

He Yuanhao,Xiao Geyang,Zhu Jun,Zou Tao,Liang Yuan

Abstract

In recent years, with the rapid development of network applications and the increasing demand for high-quality network service, quality-of-service (QoS) routing has emerged as a critical network technology. The application of machine learning techniques, particularly reinforcement learning and graph neural network, has garnered significant attention in addressing this problem. However, existing reinforcement learning methods lack research on the causal impact of agent actions on the interactive environment, and graph neural network fail to effectively represent link features, which are pivotal for routing optimization. Therefore, this study quantifies the causal influence between the intelligent agent and the interactive environment based on causal inference techniques, aiming to guide the intelligent agent in improving the efficiency of exploring the action space. Simultaneously, graph neural network is employed to embed node and link features, and a reward function is designed that comprehensively considers network performance metrics and causality relevance. A centralized reinforcement learning method is proposed to effectively achieve QoS-aware routing in Software-Defined Networking (SDN). Finally, experiments are conducted in a network simulation environment, and metrics such as packet loss, delay, and throughput all outperform the baseline.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3