Automated pipeline for nerve fiber selection and g-ratio calculation in optical microscopy: exploring staining protocol variations

Author:

Thomson Bart R.,Martin Louise Françoise,Schmidle Paul L.,Schlierbach Hannah,Schänzer Anne,Richter Henning

Abstract

G-ratio is crucial for understanding the nervous system’s health and function as it measures the relative myelin thickness around an axon. However, manual measurement is biased and variable, emphasizing the need for an automated and standardized technique. Although deep learning holds promise, current implementations lack clinical relevance and generalizability. This study aimed to develop an automated pipeline for selecting nerve fibers and calculating relevant g-ratio using quality parameters in optical microscopy. Histological sections from the sciatic nerves of 16 female mice were prepared and stained with either p-phenylenediamine (PPD) or toluidine blue (TB). A custom UNet model was trained on a mix of both types of staining to segment the sections based on 7,694 manually delineated nerve fibers. Post-processing excluded non-relevant nerves. Axon diameter, myelin thickness, and g-ratio were computed from the segmentation results and its reliability was assessed using the intraclass correlation coefficient (ICC). Validation was performed on adjacent cuts of the same nerve. Then, morphometrical analyses of both staining techniques were performed. High agreement with the ground truth was shown by the model, with dice scores of 0.86 (axon) and 0.80 (myelin) and pixel-wise accuracy of 0.98 (axon) and 0.94 (myelin). Good inter-device reliability was observed with ICC at 0.87 (g-ratio) and 0.83 (myelin thickness), and an excellent ICC of 0.99 for axon diameter. Although axon diameter significantly differed from the ground truth (p = 0.006), g-ratio (p = 0.098) and myelin thickness (p = 0.877) showed no significant differences. No statistical differences in morphological parameters (g-ratio, myelin thickness, and axon diameter) were found in adjacent cuts of the same nerve (ANOVA p-values: 0.34, 0.34, and 0.39, respectively). Comparing all animals, staining techniques yielded significant differences in mean g-ratio (PPD: 0.48 ± 0.04, TB: 0.50 ± 0.04), myelin thickness (PPD: 0.83 ± 0.28 μm, TB: 0.60 ± 0.20 μm), and axon diameter (PPD: 1.80 ± 0.63 μm, TB: 1.78 ± 0.63 μm). The proposed pipeline automatically selects relevant nerve fibers for g-ratio calculation in optical microscopy. This provides a reliable measurement method and serves as a potential pre-selection approach for large datasets in the context of healthy tissue. It remains to be demonstrated whether this method is applicable to measure g-ratio related with neurological disorders by comparing healthy and pathological tissue. Additionally, our findings emphasize the need for careful interpretation of inter-staining morphological parameters.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous),Anatomy

Reference36 articles.

1. Automated method for the segmentation and morphometry of nerve fibers in large-scale CARS images of spinal cord tissue;Bégin;Biomed. Opt. Express,2014

2. Monai: An open-source framework for deep learning in healthcare;Cardoso;arXiv preprint arXiv:2211.02701,2022

3. Rapid, automated nerve histomorphometry through open-source artificial intelligence;Daeschler;Sci. Rep.,2022

4. AxonDeep: Automated Optic Nerve Axon Segmentation in Mice with Deep Learning;Deng,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3