Asgard: Are NoSQL databases suitable for ephemeral data in serverless workloads?

Author:

Shankar Karthick,Mahgoub Ashraf,Zhou Zihan,Priyam Utkarsh,Chaterji Somali

Abstract

Serverless computing platforms are becoming increasingly popular for data analytics applications due to their low management overhead and granular billing strategies. Such analytics frameworks use a Directed Acyclic Graph (DAG) structure, in which serverless functions, which are fine-grained tasks, are represented as nodes and data-dependencies between the functions are represented as edges. Passing intermediate (ephemeral) data from one function to another has been receiving attention of late, with works proposing various storage systems and methods of optimization for them. The state-of-practice method is to pass the ephemeral data through remote storage, either disk-based (e.g., Amazon S3), which is slow, or memory-based (e.g., ElastiCache Redis), which is expensive. Despite the potential of some prominent NoSQL databases, like Apache Cassandra and ScyllaDB, which utilize both memory and disk, prevailing opinions suggest they are ill-suited for ephemeral data, being tailored more for long-term storage. In our study, titled Asgard, we rigorously examine this assumption. Using Amazon Web Services (AWS) as a testbed with two popular serverless applications, we explore scenarios like fanout and varying workloads, gauging the performance benefits of configuring NoSQL databases in a DAG-aware way. Surprisingly, we found that, per end-to-end latency normalized by $ cost, Apache Cassandra's default setup surpassed Redis by up to 326% and S3 by up to 189%. When optimized with Asgard, Cassandra outdid its own default configuration by up to 47%. This underscores specific instances where NoSQL databases can outshine the current state-of-practice.

Publisher

Frontiers Media SA

Reference53 articles.

1. “Sand: towards high-performance serverless computing,”;Akkus,2018

2. “Cherrypick: Adaptively unearthing the best cloud configurations for big data analytics,”;Alipourfard;14th,2017

3. Configuring Functions in the AWS Lambda Console

4. Configuring Functions in the AWS Lambda Console

5. S3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3