The fast and the capacious: memory-efficient multi-GPU accelerated explicit state space exploration with GPUexplore 3.0

Author:

Wijs Anton,Osama Muhammad

Abstract

The GPU acceleration of explicit state space exploration, for explicit-state model checking, has been the subject of previous research, but to date, the tools have been limited in their applicability and in their practical use. Considering this research, to our knowledge, we are the first to use a novel tree database for GPUs. This novel tree database allows high-performant, memory-efficient storage of states in the form of binary trees. Besides the tree compression this enables, we also propose two new hashing schemes, compact-cuckoo and compact multiple-functions. These schemes enable the use of Cleary compression to compactly store tree roots. Besides an in-depth discussion of the tree database algorithms, the input language and workflow of our tool, called GPUexplore 3.0, are presented. Finally, we explain how the algorithms can be extended to exploit multiple GPUs that reside on the same machine. Experiments show single-GPU processing speeds of up to 144 million states per second compared to 20 million states achieved by 32-core LTSmin. In the multi-GPU setting, workload and storage distributions are optimal, and, frequently, performance is even positively impacted when the number of GPUs is increased. Overall, a logarithmic acceleration up to 1.9× was achieved with four GPUs, compared to what was achieved with one and two GPUs. We believe that a linear speedup can be easily accomplished with faster P2P communications between the GPUs.

Publisher

Frontiers Media SA

Reference72 articles.

1. “Building an efficient hash table on the GPU,”;Alcantara,2012

2. Ordered hash tables;Amble;Comput. J,1974

3. “A dynamic hash table for the GPU,”;Ashkiani,2018

4. “Analyzing and implementing GPU hash tables,”;Awad,2023

5. Balanced allocations;Azar;SIAM J. Comput,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3