Impact of Early Feeding: Metagenomics Analysis of the Infant Gut Microbiome

Author:

Di Guglielmo Matthew D.,Franke Karl R.,Robbins Alan,Crowgey Erin L.

Abstract

BackgroundDifferent feeding regimens in infancy alter the gastrointestinal (gut) microbial environment. The fecal microbiota in turn influences gastrointestinal homeostasis including metabolism, immune function, and extra-/intra-intestinal signaling. Advances in next generation sequencing (NGS) have enhanced our ability to study the gut microbiome of breast-fed (BF) and formula-fed (FF) infants with a data-driven hypothesis approach.MethodsNext generation sequencing libraries were constructed from fecal samples of BF (n=24) and FF (n=10) infants and sequenced on an Illumina HiSeq 2500. Taxonomic classification of the NGS data was performed using the Sunbeam/Kraken pipeline and a functional analysis at the gene level was performed using publicly available algorithms, including BLAST, and custom scripts. Differentially represented genera, genes, and NCBI Clusters of Orthologous Genes (COG) were determined between cohorts using count data and R (statistical packages edgeR and DESeq2).ResultsThirty-nine genera were found to be differentially represented between the BF and FF cohorts (FDR ≤ 0.01) including Parabacteroides, Enterococcus, Haemophilus, Gardnerella, and Staphylococcus. A Welch t-test of the Shannon diversity index for BF and FF samples approached significance (p=0.061). Bray-Curtis and Jaccard distance analyses demonstrated clustering and overlap in each analysis. Sixty COGs were significantly overrepresented and those most significantly represented in BF vs. FF samples showed dichotomy of categories representing gene functions. Over 1,700 genes were found to be differentially represented (abundance) between the BF and FF cohorts.ConclusionsFecal samples analyzed from BF and FF infants demonstrated differences in microbiota genera. The BF cohort includes greater presence of beneficial genus Bifidobacterium. Several genes were identified as present at different abundances between cohorts indicating differences in functional pathways such as cellular defense mechanisms and carbohydrate metabolism influenced by feeding. Confirmation of gene level NGS data via PCR and electrophoresis analysis revealed distinct differences in gene abundances associated with important biologic pathways.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3