Salivary biomarkers as pioneering indicators for diagnosis and severity stratification of pediatric long COVID

Author:

Tyrkalska Sylwia D.,Pérez-Sanz Fernando,Franco-Martínez Lorena,Rubio Camila P.,Tvarijonaviciute Asta,Martínez-Subiela Silvia,Méndez-Hernández María,González-Aumatell Alba,Carreras-Abad Clara,Domènech-Marçal Èlia,Cerón José J.,Cayuela María L.,Mulero Victoriano,Candel Sergio

Abstract

IntroductionLong COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), manifests as persistent and often debilitating symptoms enduring well beyond the initial COVID-19 infection. This disease is especially worrying in children since it can seriously alter their development. Presently, a specific diagnostic test or definitive biomarker set for confirming long COVID is lacking, relying instead on the protracted presence of symptoms post-acute infection.MethodsWe measured the levels of 13 biomarkers in 105 saliva samples (49 from children with long COVID and 56 controls), and the Pearson correlation coefficient was used to analyse the correlations between the levels of the different salivary biomarkers. Multivariate logistic regression analyses were performed to determine which of the 13 analysed salivary biomarkers were useful to discriminate between children with long COVID and controls, as well as between children with mild and severe long COVID symptoms.ResultsPediatric long COVID exhibited increased oxidant biomarkers and decreased antioxidant, immune response, and stress-related biomarkers. Correlation analyses unveiled distinct patterns between biomarkers in long COVID and controls. Notably, a multivariate logistic regression pinpointed TOS, ADA2, total proteins, and AOPP as pivotal variables, culminating in a remarkably accurate predictive model distinguishing long COVID from controls. Furthermore, total proteins and ADA1 were instrumental in discerning between mild and severe long COVID symptoms.DiscussionThis research sheds light on the potential clinical utility of salivary biomarkers in diagnosing and categorizing the severity of pediatric long COVID. It also lays the groundwork for future investigations aimed at unravelling the prognostic value of these biomarkers in predicting the trajectory of long COVID in affected individuals.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3