Preliminary Evaluation of Rapid Visual Identification of Burkholderia pseudomallei Using a Newly Developed Lateral Flow Strip-Based Recombinase Polymerase Amplification (LF-RPA) System

Author:

Li Jin,Zhong Qiu,Shang Mei-Yun,Li Min,Jiang Yuan-Su,Zou Jia-Jun,Ma Shan-Shan,Huang Qing,Lu Wei-Ping

Abstract

Burkholderia pseudomallei is an important infectious disease pathogen that can cause melioidosis. Melioidosis is mainly prevalent in Thailand, northern Australia and southern China and has become a global public health problem. Early identification of B. pseudomallei is of great significance for the diagnosis and prognosis of melioidosis. In this study, a simple and visual device combined with lateral flow strip-based recombinase polymerase amplification (LF-RPA) was developed, and the utility of the LF-RPA assay for identifying B. pseudomallei was evaluated. In order to screen out the optimal primer probe, a total of 16 pairs of specific primers targeting the orf2 gene of B. pseudomallei type III secretion system (T3SS) cluster genes were designed for screening, and F1/R3 was selected as an optimal set of primers for the identification of B. pseudomallei, and parameters for LF-RPA were optimized. The LF-RPA can be amplified at 30-45°C and complete the entire reaction in 5-30 min. This reaction does not cross-amplify the DNA of other non-B. pseudomallei species. The limit of detection (LOD) of this assay for B. pseudomallei genomic DNA was as low as 30 femtograms (fg), which was comparable to the results of real-time PCR. Moreover, 21 clinical B. pseudomallei isolates identified by 16S rRNA gene sequencing were retrospectively confirmed by the newly developed LF-RPA system. Our results showed that the newly developed LF-RPA system has a simple and short time of operation and has good application prospect in the identification of B. pseudomallei.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3