Author:
Ganbaatar Uyanga,Liu Changchun
Abstract
As the COVID-19 pandemic continues, people are becoming infected at an alarming rate, individuals are unknowingly spreading disease, and more lives are lost every day. There is an immediate need for a simple, rapid, early and sensitive point-of-care testing for COVID-19 disease. However, current testing approaches do not meet such need. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods have received substantial attention for nucleic acid-based molecular testing due to their simplicity, high sensitivity and specificity. This review explores the various CRISPR-based COVID-19 detection methods and related diagnostic devices. As with any emerging technology, CRISPR/Cas-based nucleic acid testing methods have several challenges that must be overcome for practical applications in clinics and hospitals. More importantly, these detection methods are not limited to COVID-19 but can be applied to detect any type of pathogen, virus, and fungi that may threaten humans, agriculture, and food industries in resource-limited settings. CRISPR/Cas-based detection methods have the potential to become simpler, more reliable, more affordable, and faster in the near future, which is highly important for achieving point-of-care diagnostics.
Funder
National Institutes of Health
Subject
Infectious Diseases,Microbiology (medical),Immunology,Microbiology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献