Antibiotic Resistance Pattern of Extended Spectrum Beta Lactamase Producing Escherichia coli Isolated From Patients With Urinary Tract Infection in Morocco

Author:

Kettani Halabi Mohamed,Lahlou Fatima Azzahra,Diawara Idrissa,El Adouzi Younes,Marnaoui Rabiaa,Benmessaoud Rachid,Smyej Imane

Abstract

Extended-spectrum β-lactamases producing Escherichia coli (ESBL-EC) lend resistance to most β-lactam antibiotics. Because of limited treatment options, ESBL-EC infections are generally more difficult to treat, leading to higher hospital costs, reduced rates of microbiological and clinical responses, and a threat to the patient’s life. This study aimed to determine the antibiotic resistance pattern of ESBL-EC isolated from patients with urinary tract infection in Morocco. This retrospective laboratory-based study was conducted at Cheikh Khalifa International University Hospital, Casablanca, from January 2016 to June 2019. A total of 670 urine samples were collected from urinary tract infection patients and processed by standard microbiological methods. In vitro susceptibility testing to different antibiotics of all identified isolates of Escherichia coli (E. coli) was performed following Kirby–Bauer’s disc diffusion method on Mueller–Hinton Agar according to the EUCAST standards. The reviewing of ESBL-EC was confirmed by the appearance of a characteristically shaped zone referred to as a “champagne cork” using the Combined Disk Test. Among a total of 438 E. coli isolated from nonrepetitive urine samples, two hundred fifty-nine (59%) were ESBL-EC, of which 200 (77%) were isolated from adult patients (over the age of 50) and the majority were female. All ESBL-EC isolates were resistant to third-generation cephalosporin and quinolones and sensitive to carbapenem and fosfomycin. Knowledge of antimicrobial resistance patterns in ESBL-EC, the major pathogen associated with urinary tract infection, is indispensable as a guide in choosing empirical antimicrobial treatment.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3