Author:
Radka Christopher D.,Frank Matthew W.,Simmons Tyler S.,Johnson Cydney N.,Rosch Jason W.,Rock Charles O.
Abstract
Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by β-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara−/− knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara−/− knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.
Funder
National Institute of Allergy and Infectious Diseases
National Institute of General Medical Sciences
American Lebanese Syrian Associated Charities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Lipidome of Acinetobacter baumannii antibiotic persister cells;Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids;2024-10