Microbiota profiles in pre-school children with respiratory infections: Modifications induced by the oral bacterial lysate OM-85

Author:

Esposito Susanna,Ballarini Stefania,Argentiero Alberto,Ruggiero Luca,Rossi Giovanni A.,Principi Nicola

Abstract

To describe microbiota profiles considering potential influencing factors in pre-school children with recurrent respiratory tract infections (rRTIs) and to evaluate microbiota changes associated with oral bacterial lysate OM-85 treatment, we analyzed gut and nasopharynx (NP) microbiota composition in patients included in the OM-85-pediatric rRTIs (OMPeR) clinical trial (https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-002705-19/IT). Relative percentage abundance was used to describe microbiota profiles in all the available biological specimens, grouped by age, atopy, and rRTIs both at inclusion (T0) and at the end of the study, after treatment with OM-85 or placebo (T1). At T0, Firmicutes and Bacteriodetes were the predominant genera in gut and Proteobacteria, Firmicutes, and Actinobacteria were the predominant genera in NP samples. Gut microbiota relative composition differed with age (<2 vs. ≥2 years) for Firmicutes, Proteobacteria, Actinobacteria (phyla) and Bifidobacterium, Ruminococcus, Lachnospiraceae (genera) (p < 0.05). Moraxella was more enriched in the NP of patients with a history of up to three RTIs. Intra-group changes in relative percentage abundance were described only for patients with gut and NP microbiota analysis available at both T0 and T1 for each study arm. In this preliminary analysis, the gut microbiota seemed more stable over the 6-month study in the OM-85 group, whose mean age was lower, as compared to the placebo group (p = 0.004). In this latter group, the relative abundance of Bacteroides decreased significantly in children ≥2 years. Some longitudinal significant differences in genera relative abundance were also detected in children of ≥2 years for NP Actinobacteria, Haemophilus, and Corynebacterium in the placebo group only. Due to the small number of patients in the different sub-populations, we could not identify significant differences in the clinical outcome and therefore no associations with microbiota changes were searched. The use of bacterial lysates might play a role in microbiota rearrangement, but further data and advanced analysis are needed to prove this in less heterogeneous populations with higher numbers of samples considering the multiple influencing factors such as delivery method, age, environment, diet, antibiotic use, and type of infections to ultimately show any associations with prevention of rRTIs.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3