Gut microbiota and type 1 diabetes: a two-sample bidirectional Mendelian randomization study

Author:

Luo Manjun,Sun Mengting,Wang Tingting,Zhang Senmao,Song Xinli,Liu Xiaoying,Wei Jianhui,Chen Qian,Zhong Taowei,Qin Jiabi

Abstract

ObjectiveThe real causal relationship between human gut microbiota and T1D remains unclear and difficult to establish. Herein, we adopted a two-sample bidirectional mendelian randomization (MR) study to evaluate the causality between gut microbiota and T1D.MethodsWe leveraged publicly available genome-wide association study (GWAS) summary data to perform MR analysis. The gut microbiota-related GWAS data from 18,340 individuals from the international consortium MiBioGen were used. The summary statistic data for T1D (n = 264,137) were obtained from the latest release from the FinnGen consortium as the outcome of interest. The selection of instrumental variables conformed strictly to a series of preset inclusion and exclusion criteria. MR-Egger, weighted median, inverse variance weighted (IVW), and weighted mode methods were used to assess the causal association. The Cochran’s Q test, MR-Egger intercept test, and leave-one-out analysis were conducted to identify heterogeneity and pleiotropy.ResultsAt the phylum level, only Bacteroidetes was indicated to have causality on T1D (OR = 1.24, 95% CI = 1.01-1.53, P = 0.044) in the IVW analysis. When it comes to their subcategories, Bacteroidia class (OR = 1.28, 95% CI = 1.06-1.53, P = 0.009, PFDR = 0.085), Bacteroidales order (OR = 1.28, 95% CI = 1.06-1.53, P = 0.009, PFDR = 0.085), and Eubacterium eligens group genus (OR = 0.64, 95% CI = 0.50-0.81, P = 2.84×10-4, PFDR = 0.031) were observed to have a causal relationship with T1D in the IVW analysis. No heterogeneity and pleiotropy were detected.ConclusionsThe present study reports that Bacteroidetes phylum, Bacteroidia class, and Bacteroidales order causally increase T1D risk, whereas Eubacterium eligens group genus, which belongs to the Firmicutes phylum, causally decreases T1D risk. Nevertheless, future studies are warranted to dissect the underlying mechanisms of specific bacterial taxa’s role in the pathophysiology of T1D.

Funder

National Key Research and Development Program of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Outstanding Youth Scientist Foundation of Hunan Province

Science and Technology Program of Hunan Province

China Postdoctoral Science Foundation

Key Research and Development Program of Hunan Province of China

National Health Commission of the People's Republic of China

Natural Science Foundation of Hunan Province

Science and Technology Planning Project of Guangdong Province

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3