Construction and validation of a machine learning model for the diagnosis of juvenile idiopathic arthritis based on fecal microbiota

Author:

Tu Jun-Bo,Liao Wei-Jie,Long Si-Ping,Li Meng-Pan,Gao Xing-Hua

Abstract

PurposeHuman gut microbiota has been shown to be significantly associated with various inflammatory diseases. Therefore, this study aimed to develop an excellent auxiliary tool for the diagnosis of juvenile idiopathic arthritis (JIA) based on fecal microbial biomarkers.MethodThe fecal metagenomic sequencing data associated with JIA were extracted from NCBI, and the sequencing data were transformed into the relative abundance of microorganisms by professional data cleaning (KneadData, Trimmomatic and Bowtie2) and comparison software (Kraken2 and Bracken). After that, the fecal microbes with high abundance were extracted for subsequent analysis. The extracted fecal microbes were further screened by least absolute shrinkage and selection operator (LASSO) regression, and the selected fecal microbe biomarkers were used for model training. In this study, we constructed six different machine learning (ML) models, and then selected the best model for constructing a JIA diagnostic tool by comparing the performance of the models based on a combined consideration of area under receiver operating characteristic curve (AUC), accuracy, specificity, F1 score, calibration curves and clinical decision curves. In addition, to further explain the model, Permutation Importance analysis and Shapley Additive Explanations (SHAP) were performed to understand the contribution of each biomarker in the prediction process.ResultA total of 231 individuals were included in this study, including 203 JIA patients and Non-JIA individuals. In the analysis of diversity at the genus level, the alpha diversity represented by Shannon value was not significantly different between the two groups, while the belt diversity was slightly different. After selection by LASSO regression, 10 fecal microbe biomarkers were selected for model training. By comparing six different models, the XGB model showed the best performance, which average AUC, accuracy and F1 score were 0.976, 0.914 and 0.952, respectively, thus being used to construct the final JIA diagnosis model.ConclusionA JIA diagnosis model based on XGB algorithm was constructed with excellent performance, which may assist physicians in early detection of JIA patients and improve the prognosis of JIA patients.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3