Increased abundance of bacteria of the family Muribaculaceae achieved by fecal microbiome transplantation correlates with the inhibition of kidney calcium oxalate stone deposition in experimental rats

Author:

Wang Yan,Sun JinBo,Xie Sen,Zhou Yu,Wang Tao,Liu ZhenYu,Li ChaoSheng,Gao Lei,Pan TieJun

Abstract

BackgroundThe incidence of nephrolithiasis is increasing rapidly worldwide. Calcium oxalate is the most common constituent, contributing to approximately 80% of all kidney stones. The gut microbiome, through its oxalate-degrading ability, may play a role in decreasing morbidity due to urinary calculus. Fecal microbiome transplantation (FMT) has been reported to be effective in restoring the gastrointestinal microbial community in different conditions. The transplantation of whole communities that have oxalate-degrading function may be a more effective strategy than the transplantation of isolated strains.MethodsFMT was carried out in male guinea pigs and male Sprague–Dawley laboratory rats (SDRs). Fresh feces were collected from guinea pigs housed in metabolic cages. SDRs were divided into four groups: two groups received standard rat chow (SC) (groups SC and SC + FMT), and two groups were fed a 5% potassium oxalate diet (OD) (groups OD + phosphate-buffered saline (PBS) and OD + FMT). On day 14, groups OD + PBS, OD + FMT, and SC + FMT received either PBS or guinea pig feces by esophageal gavage. The composition of the microbiota of guinea pigs and SDRs was analyzed using a 16S rRNA gene sequencing approach. Biochemical analysis of urine samples from SDRs revealed the presence of calcium oxalate (CaOx) crystals, which were presumed to originate from kidney stones. Renal function was examined using real-time PCR analysis and immunohistochemical staining for renin, angiotensin-converting enzyme, and osteopontin (OPN) expression.ResultsFMT resulted in a gut microbiota that was a mixture of guinea pig and SDR bacteria. A microbial network involving Muribaculaceae, Lactobacillus, and Bifidobacterium was activated by FMT in group OD + FMT. As a result, urinary oxalate, calcium, uric acid, creatinine and urea in urine samples were reduced significantly. Similarly, significant reduction of uric acid and blood urea nitrogen to creatinine ratio in serum samples was observed (p < 0.05). Microscopic observations revealed a high CaOx crystal score (4+) in the kidneys of rats in group OD + PBS, whereas a lower score (2+) was observed in the rats in group OD + FMT. Up-regulation of OPN and down-regulation of renin were also associated with FMT.ConclusionA microbial network involving Muribaculaceae and other oxalate-degrading bacteria achieved by FMT was capable of reducing urinary oxalate excretion and CaOx crystal deposition in the kidney through increasing intestinal oxalate degradation. FMT may exert a renoprotective function in oxalate-related kidney stones.

Funder

National Natural Science Foundation of China

Health and Family Planning Commission of Hubei Province

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3