Lactobacillus rhamnosus LB1 Alleviates Enterotoxigenic Escherichia coli-Induced Adverse Effects in Piglets by Improving Host Immune Response and Anti-Oxidation Stress and Restoring Intestinal Integrity

Author:

Wu Tao,Shi Yutao,Zhang Yanyan,Zhang Min,Zhang Lijuan,Ma Zhipeng,Zhao Di,Wang Lei,Yu Hai,Hou Yongqing,Gong Joshua

Abstract

Enterotoxigenic Escherichia coli (ETEC) is a common enteric pathogen that causes diarrhoea in humans and animals. Lactobacillus rhamnosus LB1 (formerly named Lactobacillus zeae LB1) has been shown to reduce ETEC infection to Caenorhabditis elegans and Salmonella burden in pigs. This study was to evaluate the effect of L. rhamnosus LB1 on the gut health of lactating piglets that were challenged with ETEC. Six-four piglets at 7 days of age were equally assigned into 8 groups (8 piglets per group): 1) control group (basal diet, phosphate buffer saline); 2) CT group (basal diet + 40 mg/kg colistin); 3) LL group (basal diet + 1 × 107 CFU/pig/day LB1); 4) HL group (basal diet + 1 × 108 CFU/pig/day LB1); 5) ETEC group: (basal diet + ETEC challenged); 6) CT + ETEC group (basal diet + CT + ETEC); 7) LL + ETEC group (basal diet + 1 × 107 CFU/pig/day LB1 + ETEC); 8) HL + ETEC group (basal diet + 1 × 108 CFU/pig/day LB1 + ETEC). The trial lasted ten days including 3 days of adaptation. Several significant interactions were found on blood parameters, intestinal morphology, gene, and protein expression. ETEC infection disrupted the cell structure and biochemical indicators of blood, undermined the integrity of the intestinal tract, and induced oxidative stress, diarrhoea, intestinal damage, and death of piglets. The supplementation of L. rhamnosus LB1 alleviated ETEC’s adverse effects by reducing pig diarrhoea, oxidative stress, and death, modulating cell structure and biochemical indicators of blood, improving the capacity of immunity and anti-oxidation stress of pigs, and restoring their intestinal integrity. At the molecular level, the beneficial effects of L. rhamnosus LB1 appeared to be mediated by regulating functional related proteins (including HSP70, Caspase-3, NLRP3, AQP3, and AQP4) and genes (including RPL4, IL-8, HP, HSP70, Mx1, Mx2, S100A12, Nrf2, GPX2 and ARG1). These results suggest that dietary supplementation of L. rhamnosus LB1 improved the intestinal functions and health of piglets.

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3