Adhesion of Staphylococcus aureus to Candida albicans During Co-Infection Promotes Bacterial Dissemination Through the Host Immune Response

Author:

Van Dyck Katrien,Viela Felipe,Mathelié-Guinlet Marion,Demuyser Liesbeth,Hauben Esther,Jabra-Rizk Mary Ann,Vande Velde Greetje,Dufrêne Yves F.,Krom Bastiaan P.,Van Dijck Patrick

Abstract

Interspecies interactions greatly influence the virulence, drug tolerance and ultimately the outcome of polymicrobial biofilm infections. A synergistic interaction is observed between the fungus Candida albicans and the bacterium Staphylococcus aureus. These species are both normal commensals of most healthy humans and co-exist in several niches of the host. However, under certain circumstances, they can cause hospital-acquired infections with high morbidity and mortality rates. Using a mouse model of oral co-infection, we previously showed that an oral infection with C. albicans predisposes to a secondary systemic infection with S. aureus. Here, we unraveled this intriguing mechanism of bacterial dissemination. Using static and dynamic adhesion assays in combination with single-cell force spectroscopy, we identified C. albicans Als1 and Als3 adhesins as the molecular players involved in the interaction with S. aureus and in subsequent bacterial dissemination. Remarkably, we identified the host immune response as a key element required for bacterial dissemination. We found that the level of immunosuppression of the host plays a critical yet paradoxical role in this process. In addition, secretion of candidalysin, the C. albicans peptide responsible for immune activation and cell damage, is required for C. albicans colonization and subsequent bacterial dissemination. The physical interaction with C. albicans enhances bacterial uptake by phagocytic immune cells, thereby enabling an opportunity to disseminate.

Funder

Fonds Wetenschappelijk Onderzoek

Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases

Fonds De La Recherche Scientifique - FNRS

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3